

Fusion of Multibiometrics and Liveness Information for Automated Border Control

Computational Vision Group @ University of Reading

FastPass

 $\langle \rangle$

Fingerprint Spoofing

100

Towards Anomaly Detection in Multibiometric Fusion

Problem

· Standard fusion sensitive to spoofing

Question

How to make them more robust?

Intuition

- Detect and eliminate anomalies
- Modeling human surveillance operators

Solution

- Novel spoofing-resistant fusion method
- Improved security, while retaining accuracy

10.12.2014

Related Work

Akhtar et al., BTAS'12

• Score-level fusion can be fooled by a single biometric

Rodrigues et al., BTAS'10

• Likelihood ratio (LLR) and fuzzy logic combining recognition scores and quality

Marasco et al., MCS'11

Combining liveness detection with match scores modality-wise

Marasco et al., BTAS'12

• Bayesian Belief Network for combining match scores and liveness

Rattani et al., WIFS'13

- Learning-based fusion method
- Quality, liveness and match scores are influenced by the sensor

10.12.2014

Counter-spoofing Framework

10.12.2014

Median Filtering

- Fixed score rules: $F_{sum}(\vec{s}) := \frac{1}{n} \sum_{i=1}^{n} s_i; \quad F_{median}(\vec{s}) := \underset{i=1}{\overset{n}{med}} s_i$
- Median Filter: $F_{mf}(\vec{s}) := \frac{1}{\sum_{i=1}^{n} M(\vec{s}, s_i)} \sum_{i=1}^{n} M(\vec{s}, s_i) s_i$

$$M(\vec{s}, s_i) := \begin{cases} 1, & \text{if } \left| s_i - \underset{j=1}{\overset{n}{\text{med }}} s_j \right| < \phi; \\ 0, & \text{else.} \end{cases}$$

Median Filtering:

$$F_{mf}^{2}(\vec{s}, \vec{l}) := \frac{1}{\sum_{i=1}^{n} M\left(\left[\begin{smallmatrix} \vec{s} \\ \vec{l} \end{smallmatrix}\right], \left[\begin{smallmatrix} s_{i} \\ l_{i} \end{smallmatrix}\right]\right)} \sum_{i=1}^{n} M\left(\left[\begin{smallmatrix} \vec{s} \\ \vec{l} \end{smallmatrix}\right], \left[\begin{smallmatrix} s_{i} \\ l_{i} \end{smallmatrix}\right]\right)$$
$$M\left(\left[\begin{smallmatrix} \vec{s} \\ \vec{l} \end{smallmatrix}\right], \left[\begin{smallmatrix} s_{i} \\ l_{i} \end{smallmatrix}\right]\right) := \begin{cases} 1, & \text{if } \left\|\begin{bmatrix} s_{i} \\ l_{i} \end{smallmatrix}\right] - \max_{j=1}^{n} \begin{bmatrix} s_{j} \\ l_{j} \end{smallmatrix}\right\| \\ 0, & else. \end{cases}$$

10.12.2014

Experiments

Test Database:

- Liv'Det 2013 CrossMatch (2500 live, 2000 spoof images), multibiometric setup
- Right hand images for testing, left hand images for training

Tested Spoofing Attack:

• Impostor has access to m = 0, 1,...n out of n presentable fingerprints (m-spoof)

System:

- Features: NIST mindtct (feature extraction) + bozorth (comparison)
- Spoofing: regularized LR 27.65% ferrlive and 24.2% ferrfake

10.12.2014

Results I

Method	(S)EER					d-Prime				
	0-spoof	1-spoof	2-spoof	3-spoof	4-spoof	0-spoof	1-spoof	2-spoof	3-spoof	4-spoof
Sum rule	0.14	1.91	3.42	5.83	7.52	2.48	2.40	2.27	2.10	1.94
Median rule	1.56	1.23	2.75	5.05	7.5	2.43	2.41	2.27	2.07	1.87
Median filter	1.24	1.29	2.89	5.60	7.76	2.55	2.52	2.34	2.12	1.93
1-Median filter + LR	1.69	1.78	1.78	1.78	1.78	2.89	2.89	2.89	2.89	2.89

How does a spoofing of m out of n fingers impact on fusion?

- Even a single spoofed finger severely shifts impostor score distribution.
- Standard sum rule: every additional finger increases EER by an absolute value of 1.8-2.4%.
- Even 4-finger spoofing does not necessarily imply success (EER in this case is 7.52% vs. 0.14% 0-spoof).

10.12.2014

Results II

- How to avoid negative accuracy impact of scores from fake fingerprints?
 - Median rule is more robust in spoofing (1.23% EER for 1-spoofs);
 - However, for the 0-spoof case, median rule rejects useful information.

Results III

- How to integrate spoofing countermeasures in fusion rules?
 - Idea: median has a breakdown point of 0.5 and is able to suppress a number of outliers
 - 1-median filtering (scores+liveness) is much more robust versus 3-spoof and 4-spoof attacks.
 - For (S)FARs greater than 10^B corresponding GARs differ minimally, with stable EERs in 1.69-1.78% (d-Prime 2.89)

10.12.2014

Summary

Result 1	• Fingerprint Livdet 2013: If 1 or 2 out of 4 samples are spoofed, median filtering outperforms sum rule, while not using any ancillary information
Result 2	 It is possible to define fusion rules (median filtering) integrating liveness scores such that EERs remain stable over all spoofing attempts.
Remaining Problem	 Median filtering comes at the cost of slightly reduced 0- spoof performance
Further Tasks	• Normalisation (problematic in multimodal configuration)

10.12.2014

Future Work and Remaining Challenges

Multimodal	 Increase difficulty to spoof multiple traits Decisions in the absence of certain features Extend to multispectral sensors 2D+3D 	
Quality	 Incorporation of quality in decision process Types of materials (material-independence) Increase the difficulty of replication process 	
Optimisation	 Optimised selection of filter parameters Adaptive fusion schemes Normalisation issues 	
Evaluation	 ABC-specific dataset with realistic attacks FastPass Trial Start: Q1 2015 @ VIA Extension to multimodal biometrics 	

10.12.2014

Thank you for your attention!

Any Questions?