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Content 
 Brief intro- Austrian Institute of Technology  
 

 Motivation – Development of complex HW/SW systems 
 

 Concepts – Interplay between Matlab and C/C++ 
 Matlab C++   and     C++  Matlab 

 

 Applied cases: visual analysis of crowding phenomena 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Summary 

 
 
 

2D 

Tracking via dense optical 
flow 

3D 

Queue analysis  
(length, waiting time) 
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Introduction 

Short introduction 
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MATLAB C/C++ 

Method, 
Prototype 

Product 

 MATLAB: 
 Broad spectrum of algorithmic functionalities, 
 Image analysis prototypes can be done easily and fast, 
 Large set of visualization and debugging options, 
 Rapid development  method, prototype, demonstrator 
 

 C/C++ 
 Real-time capability 

 

 
 
 

porting 

mex 

shared library 

Computationally 
intensive methods 

Verification 

Matlab engine 

generating data 

Interaction between Matlab and C/C++ 

Employed development concept 



Rapid creation of prototypes / verification 

MATLAB C/C++ 

algorithmic chain 

Computationally 
intensive algorithm  

or part of an algorithm 

1. C/C++ porting of the same functionality 
as in Matlab. Integration via a mex-
Interface 
 

2. Porting of a Matlab algorithm including a 
mex-Interface to verify the functionality 
in terms of identical results 

Interaction between Matlab and C/C++ 



Fast integration of new algorithms (1) 

new algorithm 

MATLAB C/C++ 

Matlab Engine 

Interaction between Matlab and C/C++ 

algorithmic chain 



One or more new algorithmic 
functionalities 

MATLAB C/C++ 

Matlab Compiler 

Methods compiled as 
shared lib 

Fast integration of new algorithms (2) 

Interaction between Matlab and C/C++ 

algorithmic chain 



Matlab Engine supporting C/C++ Debugging  

complex 
variables 

MATLAB C/C++ 

Matlab Engine 
Inspection / visualization 
of variables 

Interactive Matlab Session 

Interaction between Matlab and C/C++ 

algorithmic chain 



Visual Surveillance - Motivating example 

 Object detection and 
classification 

 
 
 
 Tracking 

 
 
 

 Activity recognition 
 
 

 

Typical surveillance scenario: 
Who   : people, vehicle, objects, … 
Where  is their location, movement? 
What    is the activity? 
When   does an action occur? 

Algorithmic units: 

What is image analysis in our applied context? 



 Object detection and 
classification 
 Counting, Queue length, 

Density, Overcrowding 
 Abandoned objects 
 Intruders 

 Tracking 
 Single objects 
 Video search 
 Flow 

 Activity recognition 
 Near-field (articulation) 
 Far-field (motion path) 

 

Algorithmic units: 

Typical surveillance scenario: 
Who   : people, vehicle, objects, … 
Where  is their location, movement? 
What    is the activity? 
When   does an action occur? 

Visual Surveillance - Motivating example 

What is image analysis in our applied context? 
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Visual analysis of pedestrian flows 

Intensity/RGB image Disparity (depth) image 

Human detection 

Dense motion estimation Tracking 

Crowd segmentation 

Estimating characteristic quantities 

INPUTS 

OUTPUTS Number, position, dynamics -  Quantities characterizing the context and behavior of/in the scene 

+    parameters 

Characteriztaion of dynamics 

LOW-, MID-LEVEL 

HIGH-LEVEL 

Interaction between Matlab and C/C++ 



Matlab  C++:  Matlab-Engine 

 MATLAB operates in the background as a powerful programmable algorithmic library 

Sample 
computation:  

Image 
+  

Parameter 
Signature (e.g. histogram) Input: Output: 

function [DescrTempl] = ComputeDescr(iminTempl, Params)  

MATLAB Function 

  #include "engine.h"                          // including the Matlab engine 
Engine   *ep;                               // instancing the Matlab engine 
//======== 1. Initializing the Matlab engine ============================== 
   if (!(ep = engOpen("\0")))  
        return STATUS_MATLAB_INIT_ERROR;    // otherwise return error code 
 
engPutVariable(ep, "Params", mxParams);   // Place variable Params into the MATLAB workspace 
engPutVariable(ep, "iminTempl", mxImT);   // Inserting image data into Matlab  
 
// Evaluating the expression in Matlab 
engEvalString(ep, "DescrTempl = ComputeDescr(iminTempl, Params);");  
 
// Deallocating Matlab-specific C-variables 
mxDestroyArray(mxParams); mxParams = NULL; 
mxDestroyArray(mxImT);    mxImT = NULL;  
// closing the Matlab engine 
engClose(ep);  

official example: engdemo.c 

Interaction between Matlab and C/C++ 



Matlab  C++:  shared library 
 Shared Library:  

Set of functions loaded into a C/C++ application during run-time dynamically 
 MATLAB code  MATLAB compiler  shared library 

 
 
mcc -W lib:matchlib -T link:lib ComputeDescr.m 

Compiler call: 

#include "matchlib.h"          // Compiled interface of Matlab code 
 
//============= 1. MCR and library initialization functions ======== 
if( !mclInitializeApplication(NULL, 0) ) 
{ 
 fprintf(stderr, "Could not initialize the application.\n"); 
 exit(1); 
} 
if (!matchlibInitialize()) 
{ 
    fprintf(stderr, "Could not initialize the library.\n"); 
    exit(1); 
} 
 
// compiled function call 
mlfComputeDescr(1, &mxDescrT, mxImT, mxParams);// first argument is the number of outputs 
 
matchlibTerminate();               // library termination 
mclTerminateApplication();         // application-level resource termination 

Interaction between Matlab and C/C++ 



Pedestrian flow analysis in 2D 
  

Public dataset: Grand Central Station, NYC: 720x480 pixels, computational speed: 35 fps  



Passive stereo based depth measurement 

• Depth ordering of people 
• Robustness against illumination, 

shadows, 
• Enables scene analysis 

 
 

Advantage: 

 3D stereo-camera system developed by AIT 
 Area-based, local-optimizing, correlation- 

based stereo matching algorithm 
 Specialized variant of the Census Transform 
 Resolution: typically ~1 Mpixel 
 Run-time: ~ 14 fps (Core-i7, multithreaded, SSE-optimized) 
 Excellent “depth-quality-vs.-computational-costs” ratio  
 USB 2 interface 

 



Fast Detection Framework: 
Queue Length + Waiting Time estimation 
 What is waiting time in a queue? 

C
heckpoint 

Waiting time 

Time measurement relating to last 
passenger in the queue 

Example: Announcement of waiting times (e.g. mobile app)  customer satisfaction 

Why interesting? 

Example: Infrastructure operator                                            load balancing 
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Queue analysis (length, dynamics) 



Visual queue analysis (1) 
 Challenging problem 

 
         Waiting time =  
 
 

 Shape 
 

 No predefined shape (context/situation-dependent and time-varying) 
 
 
 
 

 Motion not a pure translational pattern 
 

 Propagating stop-and-go behaviour with a noisy „background“ 
 Signal-to-noise ratio depends on the observation distance 

 

Length 
Velocity 

1. What is the shape and extent of the queue? 

2. What is the velocity of the propagation? 

Application: Queue analysis 

DEFINITION:  Collective goal-oriented motion pattern of multiple humans 
exhibiting spatial and temporal coherence 



                                                               How can we detect (weak) correlation? 
 
 
 
 
 
 
 
 
 

 Much data is necessary  Simulating crowding phenomena in Matlab 
 Social force model (Helbing 1998) 

 
  

 

 

Source: Parameswaran et al. Design and Validation of a 
System for People Queue Statistics Estimation, Video 
Analytics for Business Intelligence, 2012 

t 

x 

y 

Correlation in space and time 

goal-driven kinematics – force field repulsion by walls repulsion by „preserving privacy “ 

Application: Queue analysis 

Visual queue analysis (2) 
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MATLAB simulation tool  Data with large variability 
Creating queueing zones via MS Powerpoint as an Editor: 

Two simulated examples (video) produced by Matlab: 

Application: Queue analysis 



Pedestrian distribution: without movement Video: Coherence analysis yielding the queue configuration 

Application: Queue analysis 

Queue analysis (length, dynamics) 



Estimated configuration 
 (top-view) Detection results 

Adaptive estimation of the spatial extent of the queueing zone 

Left part of the image is intentionally blurred 
due to protecting the privacy of by-standers, 
who were not part of the experimental setup. 

Application: Queue analysis 



24 

Adaptive estimation of the spatial extent of the queueing zone 
(meander-style queue) 

Application: Queue analysis 

Estimated configuration 
 (top-view) Detection results 
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Summary 

 MATLAB is an essential tool for developing complex algorithmic units 
 Achieving the same complexity in C/C++ is associated with significant 

development efforts 
 

 Often, for a technical problem multiple solutions exist: 
 Enables rapid assessment of many alternatives by fast integration 

into an existing algorithmic chain. 
 

 Further useful aspects not covered in the talk 
 

 pcode – protecting Matlab scripts 
 Built-in support for version control (Git, SVN) – 2014b 
 User interfaces allowing for tab-panels – 2014b 
 MatlabCentral und FileExchange 

 
 

 
 



Thank you for your attention! 

CSABA BELEZNAI 
Senior Scientist 
Safety & Security Department 
Video- and Security Technology 
  
AIT Austrian Institute of Technology GmbH 
Donau-City-Straße 1  |  1220 Vienna  | Austria 
T +43(0) 664 825 1257  |  F +43(0) 50550-4170 
csaba.beleznai@ait.ac.at  |  http://www.ait.ac.at 
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