
Csaba Beleznai
Senior Scientist
Video- and Safety Technology
Safety & Security Department
AIT Austrian Institute of Technology GmbH
Vienna, Austria

Algorithmic development for 2D and
3D vision systems using Matlab

Csaba Beleznai
Michael Rauter, Christian Zinner, Andreas Zweng,
Andreas Zoufal, Julia Simon, Daniel Steininger,
Markus Hofstätter und Andreas Kriechbaum

Co-Authors:

Content
 Brief intro- Austrian Institute of Technology

 Motivation – Development of complex HW/SW systems

 Concepts – Interplay between Matlab and C/C++
 Matlab C++ and C++  Matlab

 Applied cases: visual analysis of crowding phenomena

 Summary

2D

Tracking via dense optical
flow

3D

Queue analysis
(length, waiting time)

3

Introduction

Short introduction

4

MATLAB C/C++

Method,
Prototype

Product

 MATLAB:
 Broad spectrum of algorithmic functionalities,
 Image analysis prototypes can be done easily and fast,
 Large set of visualization and debugging options,
 Rapid development  method, prototype, demonstrator

 C/C++
 Real-time capability

porting

mex

shared library

Computationally
intensive methods

Verification

Matlab engine

generating data

Interaction between Matlab and C/C++

Employed development concept

Rapid creation of prototypes / verification

MATLAB C/C++

algorithmic chain

Computationally
intensive algorithm

or part of an algorithm

1. C/C++ porting of the same functionality
as in Matlab. Integration via a mex-
Interface

2. Porting of a Matlab algorithm including a
mex-Interface to verify the functionality
in terms of identical results

Interaction between Matlab and C/C++

Fast integration of new algorithms (1)

new algorithm

MATLAB C/C++

Matlab Engine

Interaction between Matlab and C/C++

algorithmic chain

One or more new algorithmic
functionalities

MATLAB C/C++

Matlab Compiler

Methods compiled as
shared lib

Fast integration of new algorithms (2)

Interaction between Matlab and C/C++

algorithmic chain

Matlab Engine supporting C/C++ Debugging

complex
variables

MATLAB C/C++

Matlab Engine
Inspection / visualization
of variables

Interactive Matlab Session

Interaction between Matlab and C/C++

algorithmic chain

Visual Surveillance - Motivating example

 Object detection and
classification

 Tracking

 Activity recognition

Typical surveillance scenario:
Who : people, vehicle, objects, …
Where is their location, movement?
What is the activity?
When does an action occur?

Algorithmic units:

What is image analysis in our applied context?

 Object detection and
classification
 Counting, Queue length,

Density, Overcrowding
 Abandoned objects
 Intruders

 Tracking
 Single objects
 Video search
 Flow

 Activity recognition
 Near-field (articulation)
 Far-field (motion path)

Algorithmic units:

Typical surveillance scenario:
Who : people, vehicle, objects, …
Where is their location, movement?
What is the activity?
When does an action occur?

Visual Surveillance - Motivating example

What is image analysis in our applied context?

11

Visual analysis of pedestrian flows

Intensity/RGB image Disparity (depth) image

Human detection

Dense motion estimation Tracking

Crowd segmentation

Estimating characteristic quantities

INPUTS

OUTPUTS Number, position, dynamics - Quantities characterizing the context and behavior of/in the scene

+ parameters

Characteriztaion of dynamics

LOW-, MID-LEVEL

HIGH-LEVEL

Interaction between Matlab and C/C++

Matlab  C++: Matlab-Engine

 MATLAB operates in the background as a powerful programmable algorithmic library

Sample
computation:

Image
+

Parameter
Signature (e.g. histogram) Input: Output:

function [DescrTempl] = ComputeDescr(iminTempl, Params)

MATLAB Function

 #include "engine.h" // including the Matlab engine
Engine *ep; // instancing the Matlab engine
//======== 1. Initializing the Matlab engine ==============================
 if (!(ep = engOpen("\0")))
 return STATUS_MATLAB_INIT_ERROR; // otherwise return error code

engPutVariable(ep, "Params", mxParams); // Place variable Params into the MATLAB workspace
engPutVariable(ep, "iminTempl", mxImT); // Inserting image data into Matlab

// Evaluating the expression in Matlab
engEvalString(ep, "DescrTempl = ComputeDescr(iminTempl, Params);");

// Deallocating Matlab-specific C-variables
mxDestroyArray(mxParams); mxParams = NULL;
mxDestroyArray(mxImT); mxImT = NULL;
// closing the Matlab engine
engClose(ep);

official example: engdemo.c

Interaction between Matlab and C/C++

Matlab  C++: shared library
 Shared Library:

Set of functions loaded into a C/C++ application during run-time dynamically
 MATLAB code  MATLAB compiler  shared library

mcc -W lib:matchlib -T link:lib ComputeDescr.m

Compiler call:

#include "matchlib.h" // Compiled interface of Matlab code

//============= 1. MCR and library initialization functions ========
if(!mclInitializeApplication(NULL, 0))
{
 fprintf(stderr, "Could not initialize the application.\n");
 exit(1);
}
if (!matchlibInitialize())
{
 fprintf(stderr, "Could not initialize the library.\n");
 exit(1);
}

// compiled function call
mlfComputeDescr(1, &mxDescrT, mxImT, mxParams);// first argument is the number of outputs

matchlibTerminate(); // library termination
mclTerminateApplication(); // application-level resource termination

Interaction between Matlab and C/C++

Pedestrian flow analysis in 2D

Public dataset: Grand Central Station, NYC: 720x480 pixels, computational speed: 35 fps

Passive stereo based depth measurement

• Depth ordering of people
• Robustness against illumination,

shadows,
• Enables scene analysis

Advantage:

 3D stereo-camera system developed by AIT
 Area-based, local-optimizing, correlation-

based stereo matching algorithm
 Specialized variant of the Census Transform
 Resolution: typically ~1 Mpixel
 Run-time: ~ 14 fps (Core-i7, multithreaded, SSE-optimized)
 Excellent “depth-quality-vs.-computational-costs” ratio
 USB 2 interface

Fast Detection Framework:
Queue Length + Waiting Time estimation
 What is waiting time in a queue?

C
heckpoint

Waiting time

Time measurement relating to last
passenger in the queue

Example: Announcement of waiting times (e.g. mobile app)  customer satisfaction

Why interesting?

Example: Infrastructure operator  load balancing

17

Queue analysis (length, dynamics)

Visual queue analysis (1)
 Challenging problem

 Waiting time =

 Shape

 No predefined shape (context/situation-dependent and time-varying)

 Motion not a pure translational pattern

 Propagating stop-and-go behaviour with a noisy „background“
 Signal-to-noise ratio depends on the observation distance

Length
Velocity

1. What is the shape and extent of the queue?

2. What is the velocity of the propagation?

Application: Queue analysis

DEFINITION: Collective goal-oriented motion pattern of multiple humans
exhibiting spatial and temporal coherence

 How can we detect (weak) correlation?

 Much data is necessary  Simulating crowding phenomena in Matlab
 Social force model (Helbing 1998)

Source: Parameswaran et al. Design and Validation of a
System for People Queue Statistics Estimation, Video
Analytics for Business Intelligence, 2012

t

x

y

Correlation in space and time

goal-driven kinematics – force field repulsion by walls repulsion by „preserving privacy “

Application: Queue analysis

Visual queue analysis (2)

20

MATLAB simulation tool  Data with large variability
Creating queueing zones via MS Powerpoint as an Editor:

Two simulated examples (video) produced by Matlab:

Application: Queue analysis

Pedestrian distribution: without movement Video: Coherence analysis yielding the queue configuration

Application: Queue analysis

Queue analysis (length, dynamics)

Estimated configuration
 (top-view) Detection results

Adaptive estimation of the spatial extent of the queueing zone

Left part of the image is intentionally blurred
due to protecting the privacy of by-standers,
who were not part of the experimental setup.

Application: Queue analysis

24

Adaptive estimation of the spatial extent of the queueing zone
(meander-style queue)

Application: Queue analysis

Estimated configuration
 (top-view) Detection results

25

Summary

 MATLAB is an essential tool for developing complex algorithmic units
 Achieving the same complexity in C/C++ is associated with significant

development efforts

 Often, for a technical problem multiple solutions exist:
 Enables rapid assessment of many alternatives by fast integration

into an existing algorithmic chain.

 Further useful aspects not covered in the talk

 pcode – protecting Matlab scripts
 Built-in support for version control (Git, SVN) – 2014b
 User interfaces allowing for tab-panels – 2014b
 MatlabCentral und FileExchange

Thank you for your attention!

CSABA BELEZNAI
Senior Scientist
Safety & Security Department
Video- and Security Technology

AIT Austrian Institute of Technology GmbH
Donau-City-Straße 1 | 1220 Vienna | Austria
T +43(0) 664 825 1257 | F +43(0) 50550-4170
csaba.beleznai@ait.ac.at | http://www.ait.ac.at

http://www.d-sens.eu/

mailto:csaba.beleznai@ait.ac.at
http://www.ait.ac.at/

	Foliennummer 1
	Content
	Foliennummer 3
	Foliennummer 4
	Rapid creation of prototypes / verification
	Fast integration of new algorithms (1)
	Fast integration of new algorithms (2)
	Matlab Engine supporting C/C++ Debugging
	Visual Surveillance - Motivating example
	Visual Surveillance - Motivating example
	Visual analysis of pedestrian flows
	Matlab  C++: Matlab-Engine
	Matlab  C++: shared library
	Pedestrian flow analysis in 2D�
	Passive stereo based depth measurement
	Fast Detection Framework:�Queue Length + Waiting Time estimation�
	Queue analysis (length, dynamics)
	Visual queue analysis (1)
	Visual queue analysis (2)
	MATLAB simulation tool  Data with large variability
	Queue analysis (length, dynamics)
	Adaptive estimation of the spatial extent of the queueing zone
	Adaptive estimation of the spatial extent of the queueing zone (meander-style queue)
	Summary
	Foliennummer 26

